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Traditionally, physicists deduce the observational (physical) meaning of 
probabilistic predictions from the implicit assumption that the well-defined events 
whose probabilities are 0 never occur. For example, the conclusion that in a 
potentially infinite sequence of identical experiments with probability 0.5 (like 
coin tossing) the frequency of heads tends to 0.5 follows from the theorem that 
sequences for which the frequencies do not lend to 0.5 occur with probability 0. 
Similarly, the conclusion that in quantum mechanics, measuring a quantity always 
results in a number from its spectrum is justified by the fact that the probability 
of getting a number outside the spectrum is 0. In the mid-60s, a consistent 
formalization of this assumption was proposed by Kolmogorov and Martin-L6f, 
who defined a random element of a probability space as an element that does 
not belong to any definable set of probability 0 (definable in some reasonable 
sense). This formalization is based on the fact that traditional probability measures 
are (r-additive, i.e., that the union of countably many sets of probability 0 has 
measure 0. In quantum mechanics with infinitely many degrees of freedom (e.g., 
in quantum field theory) and in statistical physics one must often consider non- 
(r-additive measures, for which the Martin-l.~f's definition does not apply. Many 
such measures can be defined as "limits" of standard probability distributions. 
In this paper, we formalize the notion of a random element for such finitely- 
additive probability measures, and thus explain the observational (physical) 
meaning of such probabilities. 

1. OBSERVATIONAL (PHYSICAL) MEANING OF 
TRADITIONAL (o'-ADDITIVE) PROBABILITY 
MEASURES: RANDOMNESS IN THE SENSE OF 
KOLMOGOROV-MARTIN-LOF 

1.1. How to Describe When Experiments Are consistent with a 
Probabilistic Theory: Idea 

In classical (prequantum) physics, predictions were usually determinis- 
tic. For such predictions, there is no problem of checking whether a theory 
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is consistent with the experiment: if the predicted event occurs, the theory 
is confirmed (so far); if it does not occur, the theory is rejected. 

In modern physics, the majority of the predictions are of probabilistic 
nature: instead of predicting what exactly is going to happen, physics can, 
at best, predict the probabilities of different outcomes. In this case, it is not 
so clear whether an experiment is consistent with the theory or not. For 
example, if the hypothesis is that we have a fair coin (with probability of 
heads 0.5), what sequences of actual coin-tossing results are consistent with 
this hypothesis? 

For one, if the coin is really fair, in this sequence the frequency fn of 
heads among the first n toss results must tend to 0.5 as n ---> oo. Why? Because 
it can be mathematically proven that for a probability measure that describes 
a fair coin, the probability that f~ 4-~ 0.5 is 0. 

All other statistical laws are justified in exactly the same manner: we 
prove that some well-defined event has a probability 0, and from this we 
conclude that this event simply cannot occur. 

This conclusion is based on an implicit assumption that a well-defined 
event with 0 probability cannot occur. 

A typical quantum example is: the conclusion that in quantum mechanics, 
measuring a quantity always results in a number from its spectrum is justified 
by the fact that the probability of getting a number outside the spectrum is 0. 

1.2. This Idea May Seem Inconsistent 

At first glance, it may seem that this idea will not work for simple 
continuous probability distributions on a real line, e.g., for the normal distribu- 
tion or for the uniform distribution on some interval. In these distributions, 
for every real number x, the probability of getting exactly this real number 
is 0. 

So it may seem that no real number can occur at all, and that, therefore, 
the above assumption is inconsistent. 

1.3. This Idea Is Consistent If We Restrict It to "Well-Defined" 
Events Only 

The situation with simple continuous distributions of the real line (e.g, 
with the standard Gaussian distribution) is not so bad if we properly interpret 
the term "well-defined" in our main assumption as meaning that this event 
can be uniquely defined by a text in some formal language. 

For example, the real numbers 0, 1, 0.5, e, etc., are all well defined. 
For such well-defined numbers, the conclusion that these numbers cannot 
occur as a result of a normally distributed random process makes perfect 
physical sense. To be more precise, if we measured the unknown physical 
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quantity with an accuracy 1 and we got the result .~ = 1, then it could still 
happen that the actual value of the measured quantity is random relative to 
the standard Gaussian distribution. However, if we measure the same quantity 
x with better and better accuracy and after each measurement we still get 1 
(e.g., if we get 1, 1.0, 1.00, etc.), then after a few measurements, every 
physicist would conclude that the actual value of this quantity x is not random 
(because, according to physicists' intuition, 1.000 . . .  is not a random 
number). 

Here, 1 was simply an example. If we get 0, or 0.5, or e, a physicist 
will also conclude that this is not a random number. 

If we require that well-defined events with probability 0 do not occur, 
then we no longer have a contradiction: Indeed, there are only countably 
many texts in any given language, and therefore there exist no more than 
countably many events of probability 0 (in particular, there are only countably 
many definable real numbers). If we exclude all these events, then totally, 
we are excluding the countable union of events of probability 0; the remainder 
is not empty (it actually has probability 1). 

Let us describe how this idea is formalized. 

1.4. Random Element: Formalization of the Observational Meaning 
of Probabilistic Theories 

To describe which probabilistic theories are consistent with experiments 
and which are not, we must formalize the implicit assumption that an event 
with 0 probability cannot occur. 

In mid-60s, a consistent formalization of this assumption was proposed 
by Kolmogorov and Martin-L0f, who defined a random element of the proba- 
bility space as an element that does not belong to any definable set of 
probability 0 (definable in some reasonable sense). 

The formal definition of "random" was proposed by Kolmogorov's 
student Martin-L6f (1966); for current coverage of this topic, see, e.g., Li 
and Vit,~nyi (1997). [We will be using a version of this definition proposed 
by Benioff (1976); see also Kreinovich and Longpr6 (1996)]. 

Definition 1.1. Let a mathematical language L be fixed (e.g., language 
of set theory, or language of recursive objects). 

�9 Sets defined by formulas from L (i.e., sets of the type {xlP(x)}, 
where P(x) is a formula from L) will be called (L-)definable (or 
simply definable, for short). 

�9 Let IX be a probability measure on a set X. An element x ~ X is 
called random w.r.t. Ix if x does not belong to any definable set of 
Ix-measure 0. 
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Comment. For recursive L, we get the original Kolmogorov-Martin-L0f 
definition of randomness. 

1.5. ar-Additivity Is Impor t an t  for  this Definition 

The crucial point is to prove that random elements exist, and that, 
moreover, the set of  all random elements has probability 1 (i.e., that almost all 
elements are random). To prove that, Martin-L6f used the fact that traditional 
probability measures are tr-additive, i.e., that the union of countably many 
sets of probability 0 has measure 0. 

Indeed, in every language, there are at most countably many words. 
Since different definable sets are described by different formulas, there are 
at most countably many different definable sets of measure 0. Hence, the 
complement to the set of all random elements is the union of  countably many 
sets of measure 0 and thus itself a set of measure 0. 

2. FINITELY-ADDITIVE MEASURES NATURALLY E M E R G E  IN 
QUANTUM FIELD T H E O R Y  AND IN STATISTICAL 
PHYSICS 

Kolmogorov's probability theory and Kolmogorov-Martin-L6f defini- 
tion of a random sequence are based on the assumption that the probability 
measure ix is ~r-additive, i.e., that the union of countably many sets of 
probability 0 also has probability 0. Another (equivalent) way of describing 
o'-additivity is that if we have a countable sequence Al . . . .  An . . . .  of  
measurable pail-wise disjoint sets (Ai f3 Aj = 0 for i ~ j), then 

ix(A 1 U A 2 O . . .  U An U . . . )  = ix(AI) + ix(A2) + . . .  + II,(An) + . . .  

In modem physics, however, probabilities are often only finitely addi- 
tive, i.e., 

ix(At U A2 O . . .  O An) = ix(AI) + ix(A2) + . . .  + ix(An) 

is true only for finite families of pairwise disjoint sets. We will show that 
for such probability measures, Martin-L6f's definition does not work. Before 
we describe why, let us briefly enumerate the cases when such finitely- 
additive measures emerge (Wightman, 1976). 

2.1. Finitely-Additive Measures in the Description of  the Classical 
Limit of Quantum Systems 

2.1.1. Why Classical Limit 

It is well known that for the same system, quantum equations are much 
more complicated to solve than the corresponding classical ones. The main 
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method of solving the corresponding quantum problems is to take into consid- 
eration the fact that many quantum effects can usually be neglected, and we 
can replace the precise quantum description of the corresponding effects by 
its classical limit. 

From the physical viewpoint, quantum effects are caused by the fact 
that Planck's constant h is different from 0. For example, since h > 0, the 
Heisenberg inequality Ap �9 Ax -> h causes the uncertainties Ap and Ax in 
momentum p and coordinate x to be different from 0; thus, in contrast to 
classical physics, a quantum particle cannot have precise values of both p 
and x. Hence, ideally, to define a classical limit, we must be able to replace 
Planck's constant in the equations of quantum physics by 0. From the mathe- 
matical viewpoint, since Schrtdinger equation (the basic equation of quantum 
mechanics) includes division by h, we cannot simply divide by 0. We must, 
instead, do the following: 

�9 Rewrite the quantum equations in such a way that all occurrences 
of the Planck constant have a symbol h instead of its actual numeri- 
cal value. 

�9 Replace this symbol h by smaller and smaller values, and compute 
the physical consequences of the resulting equations. 

�9 Take the limit values of these effects (when h ---> 0) as the desired 
classical limit. 

2.1.2. Pointwise Particle 

Let us consider the classical limit of a 1D particle (which is the simplest 
possible quantum object). In quantum mechanics, a particle is never located 
with a 100% certainty at a single point. Instead, it can appear at different 
locations with different probabilities. The corresponding probability density 
p(x) is characterized by a wave function 0(x) as p(x) = I~J(x)l 2. Fourier 
transform of the wave function gives us the distribution in momentum space. 

In the classical limit, we must have classical pointwise particles. Thus, 
in the classical limit h --> 0, the wave function must become concentrated 
at a single point. The corresponding limit probability density can be described 
by a delta-function ~(x) [so that, crudely speaking, O(x) = ~v/-~]- 

As h ---> 0, the wave function becomes closer and closer to this pointwise 
limit, and the corresponding probability distribution in the momentum space 
becomes distributed across larger and larger intervals [ -p ,  p]. The wave 
function for p is, in quantum mechanics, equal to the Fourier transform of 
the wave function for x. So, when the wave function for x tends to the delta- 
function, the corresponding wave function forp tends to the Fourier transform 
of the delta-function, i.e., to a constant. Thus, the limit probability density 
is constant throughout the entire real line. 
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I f  we had a constant density over a certain interval, then we would say 
that we have a uniform distribution over this interval. Thus, since in the limit 
we have a constant density over the entire real line, we can say that in this 
limit we get a "uniform" distribution over the real line. In more precise terms, 
we can conclude that the probability of  the momentum p to be in an arbitrary 
set A tends to the limit IX(A) = lim ixo(An[-n ,  n]/~([-n, n]), where IX0(A) 
is the standard Lebesque measure. 

One can easily check that this probability measure IX(A) is finitely 
additive. However, thus-defined probabilities Ix(A) are not or-additive: Indeed: 

�9 The sets Ai = [i, i + l) are pairwise disjoint. 
�9 For each of them, Ix(Ai) = limn (l/(2n)) = 0. 
�9 But (since R = UAi), for their union UAi, we have 

oo oo 

Ix(UAi)= Ix(R)--  1 :/: 0 =  ~ Ix(Ai)= ~ 0 
i =  - - ~  i =  - - o o  

In reality, of  course, this finitely-additive measure is only an approxima- 
tion to the actual or-additive probability measure and therefore, in principle, 
if we will not be able to define randomness in the sense of  the "limit" measure 
Ix, we will always be able to use the original probability measure Ixn instead. 
However, for all practical purposes, we can replace the actual measure Ix~ 
by its finitely additive approximation Ix: when n is large enough, all statistical 
characteristics of  Ixn are as close as possible to the characteristics of  the limit 
measure Ix. 

Since all the observable characteristics of  Ix are indistinguishable from 
the characteristics of  Ixn, from the physical viewpoint, both Ix and Ix~ give a 
good description of the system. It is therefore desirable to be able to define 
a random element w.r.t. Ix in such a way that random elements w.r.t. Ix will 
be approximately the same ones as random elements w.r.t. Ix~. 

2.1.3. Wave 

A similar argument can be repeated for a planar wave. A planar wave 
is usually described by a periodic wave function ~b (x) = a0 exp(ik, x). 

This description is used in standard textbooks on quantum theory (see, 
e.g., Landau and Lifschitz, 1965) and it is a pretty good description of certain 
physical phenomena. For this state, the probability density p(x) = I~b(x)l 2 = 
la012 has the exact same value for all points x. In this sense, we have a 
uniform distribution on the real line. We can approximate this distribution 
by uniform distributions located on an interval [ - n ,  n] for n --~ ~. For every 
n, the condition that the total probability of  being somewhere must add up 
to 1 leads to la012 -- 1/2n, so in the limit, we have the same finitely-additive 
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probability distribution as the one that describes momentum of a pointwise 
particle. 

In both cases, finitely-additive probability measures correspond to the 
states that are outside the standard Hilbert space of states (although they can 
be represented as limits of states from the standard Hilbert space). 

2.2. Algebraic (Finitely-Additive) States in Quantum Field Theory 

For a single particle, and, moreover, for an arbitrary quantum system 
with finitely many degrees of freedom, finitely-additive measures and corres- 
ponding non-Hilbert states are a good approximation, a good computational 
tool, but strictly speaking, they are not necessary for describing the system. 
However, when we turn to systems with infinitely many degrees of freedom 
(e.g., to quantum field theory), the situation drastically changes: if we continue 
to use states from the standard Hilbert space, we end up getting "divergences," 
meaningless infinite values that indicate that the resulting states are outside 
the standard Hilbert space (Emch, 1972, 1984, Wightman, 1976). Such non- 
Hilbert states cannot be easily described by the standard von Neumann 
formalism; they need special algebraic generalizations; because of that, such 
states are usually called algebraic states,. 

Non-Hilbert spaces usually correspond to nonstandard, i.e., finitely- 
additive probability measures. Therefore, if we want to understand what 
exactly these physical predictions mean in observational terms, we must be 
able to generalize the notion of a random element to such measures. 

Comment. Initially, some mathematicians viewed these "divergences" 
as indications that the existing formalism is inconsistent and that an alternative 
approach is necessary. From this viewpoint, our problem may seem misstated: 
instead of defining random elements w.r.t, finitely-additive measures, why not 
find an alternative theory that would lead to a tr-additive probability measure? 

It turned out, however, that in principle, the old (seemingly ad hoc) 
formalisms can be reformulated in a mathematically consistent manner; a 
large part of these formalisms can be reformulated in terms of the algebraic 
quantum field theory (Emch, 1972; 1984; Wightman, 1976), and practically 
all parts of these formalisms can be reformulated in terms of nonstandard 
analysis (Robinson and Keleman, 1972; Kreinovich, 1980), a theory proposed 
by Robinson (1974, see also Davis, 1977) to formalize the physicists' intuition 
about actual infinities and actual infinitesimals. So, our problem is a real 
problem. 

2.3. Algebraic States Are Probably Needed for Finkelstein's 
Quantum Topology 

To some extent, quantum field theory can be viewed as a phenomenologi- 
cal theory, because it is based on the underlying notion of the nonquantized 
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space-time. From the methodological viewpoint, it is desirable to reformulate 
all physics in terms of the most fundamental physical notion: the notion of 
causality. This program has led to many interesting ideas and results (see, 
e.g., Finkelstein and Gibbs, 1993; Finkelstein, 1996). 

Do we need algebraic states for this formalism? For more standard 
quantum formalisms, the answer would be: yes, if this formalism describes 
systems with infinitely many degrees of freedom. Finkelstein's description 
is based on causality, not on real numbers and vector spaces, so we cannot 
directly tell how many degrees of freedom we describe; however, the fact that 
with this formalism we can describe fields and other systems that traditionally 
require infinitely many degrees of freedom to describe makes it reasonable 
to assume that for Finkelstein's formalism, algebraic states (and finitely- 
additive measures) are also necessary. 

2.4. Algebraic States in Statistical Physics 

Standard distributions from traditional statistical physics are derived 
from the (sometimes implicit) assumption that the initial locations are distrib- 
uted uniformly in R 3 (or, for N particles, in R3N). From the viewpoint of 
precise probability theory, there is no such distribution, so, in order to formally 
justify these physical derivations, mathematicians describe probability mea- 
sures uniformly distributed on a set of volume V and then tend V to oo (see, 
e.g., Emch, 1972, 1984, Wightman, 1976, R6nyi, 1970). 

From the physical viewpoint, however, this limit transition is nothing 
more than a mathematical trick whose goal is to formalize the physical 
notion of uniform distribution on a space. It is therefore desirable to make 
observational predictions based on this physical distribution rather than on 
its mathematical approximation. Again, we need to define the notion of a 
random element for finitely-additive measures. 

3. THE PROBLEM:  K O L M O G O R O V - M A R T I N - L O F  
RANDOMNESS IS NOT DIRECTLY APPLICABLE TO 
FINITELY-ADDITIVE MEASURES 

In the previous section we showed that in many physical situations, the 
probability measure ~ is only finitely additive, and that it is desirable to 
describe elements random w.r.t, this measure tz. 

At first glance, it may seem that the same informal idea can be applied 
here: we can call an element random if it does not belong to any definable 
set of measure 0. We have seen that for ~r-additive measures, this definition 
leads to a reasonable class of "random" elements. However, as we will see 
in a moment, for finitely-additive measures, a similar definition would be 
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meaningless (because there would be no elements that are "random" in the 
sense of  this definition). 

As an example, let us consider the uniform distribution ~ of a real line. 
This distribution can be defined as a limit of  uniform distributions on the 
intervals [ - n ,  n] as n --) o0. In other words, for every set A C_ R, we can 
define ~(A) as 

I~(A) = lim po(A f3 [ - n ,  n]) 
-~oo ~ ( [ - n ,  n]) 

where ~ is the standard Lebesgue measure on the real line. For this distribu- 
tion and for every integer m, the probability of  the interval [m, m + 1) is 
the limit of  l/(2n), i.e., 0. Thus, if we apply the above definition of a random 
element, we will have to conclude that a random element x does not belong 
to any interval [m, m + 1). But these intervals cover the entire real line, so 
there are simply no real numbers that would be outside all of  them. Thus, 
in the sense of this definition, there are simply no random elements. 

A similar construction shows that no random elements exist for a uniform 
distribution on R t that is used in statistical physics. So, we have a problem: 
How do we define randomness for  non-~r-additive probabili ty measures? 

4. OUR SOLUTION: A N E W  D E F I N I T I O N  O F  R A N D O M N E S S  
FOR "LIMIT" PROBABILITY MEASURES 

4.1. Solution: Simplest Case 

We have seen that many finitely-additive measures emerging in quantum 
mechanics with finitely many degrees of  freedom (e.g., in quantum field 
theory) and in statistical physics are "'limits" of  standard probability distribu- 
tions. Let us show how to define the notion of  a random element for such 
"limit" measures. Before doing that, let us fn'st formalize what "limit" mea- 
sure means. 

Definition 4.1. We say that a finitely additive measure p. on a set X is 
a simple limit measure if there exist: 

�9 a definable sequence of sets Vl C V2 C . . .  Vn C . . .  such that U V,- 
= X; 

�9 a definable sequence of or-additive probability measures ~i defined 
on V~ such that for every i < j, a set A C_ V~ is measurable w.r.t. ~i 
iff it is measurable w.r.t. ~j; and 

�9 a definable sequence of positive real numbers h o, i < j, such that 
for every A C_ V/, we have I~,{A) = hij �9 ~(A);  
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such that for every set A C_ X for which the measure I~(A) is defined, we 
have Ix(A) = limn IXn(A U Vn). 

Example. A "uniform measure on the real line" (X = R) can be defined 
as follows: For each n, we take the interval [ - n ,  n] as V~, and a uniform 
distribution on Vn as IX~. Then the equality IX,(A) = hij �9 IXj(A) holds for 
hij = jli. 

Since the measure IX is defined as a limit of  or-additive measures IX~, 
it is natural to define the set R of  all elements random w.r.t. I~ as a "limit" 
of  the sets R~ random w.r.t. IX~. It turns out that this sequence of sets R i is 
monotonically nondecreasing (R`. C_ R2 C_ . . .  C_ R~ C . . . ;  see Proposition 
1 below), and therefore we can define this "limit" set as simply the union 
R = U ~ =  1 Rn: 

Proposition 1. Let IX be a simple limit measure, i < j be integers, and 
let x ~ V~ be random w.r.t. IX .̀. Then, x will be also random w.r.t. I~j. 

Comment.  For the reader 's  convenience, all proofs are placed in the 
special Proofs section at the end of the paper. 

Definition 4.2. Let IX be a simple limit measure on the set X. We say 
that an element x is random w.r.t. IX if it is random w.r.t, one of  the measures IX,-. 

Before we analyze this definition, let us first check that the set of  random 
elements is indeed nonempty (since the previous attempt at defining sequences 
random w.r.t, a limit measure was ruined by the discovery that no elements 
are random in that sense). This is easy to check because according to the 
new definition, the set of  random elements is defined as a union of sets of  
elements random in the traditional sense, and it therefore contains each of 
these (nonempty) sets, so it is nonempty itself. 

4.2.  So lut ion:  G e n e r a l  C a s e  

In the above simple case, we assumed that in the sequence ixn that 
defines IX, for every i < j ,  the restrictions of  measures Ixi and ply on V/are 
linearly related. It turns out that for our purpose (i.e., for defining a random 
element), it is quite sufficient to assume a much weaker condition: that the 
restrictions of  IX .̀ and I~j on V,. are absolutely continuous w.r.t, each other (see 
e.g., Edwards, 1995, Chapter 4), i.e., a set A _C V,. has Ixrmeasure 0 iff it has 
I~imeasure 0: 

Definition 4.3. We say that a finitely-additive measure IX on a set X is 
a limit measure if there exist: 

�9 a definable sequence of sets Vl C V2 C_ . . .  V n C . . .  such that t3 V/ 
= X; 
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a definable sequence of tr-additive probability measures ixi defined 
on V/such that for every i < j ,  a set A C_ V~ is measurable w.r.t, ixi 
iff it is measurable w.r.t, ixj; and a set A C V,- has ix,--measure 0 iff 
it has iximeasure 0 (i.e., the restrictions of  ixi and IXj to V,. are 
absolutely continuous w.r.t, each other); 

such that for every set A C X for which the measure Ix(A) is defined, we 
have ix(A) = lim~ ixn(A U V~). 

Similarly to the simple limit case, we can show that the sets Rn of 
elements random w.r.t. Ixn form a monotonic sequence, and thus we can apply 
Definition 4,2 to define an element random w.r.t, the limit measure: 

Proposition 2. Let p, be a limit measure, i < j be integers, and let 
x e V/be random w.r.t. Ixi. Then x will also be random w.r.t. IXj. 

Definition 4.4. Let ix be a limit measure on the set X. We say that an 
element x is random w.r.t. I~ if  it is random w.r.t, one of the measures ixi. 

4.3. Solut ion Reformulated:  Idea 

From the "practical" viewpoint, our definition is acceptable. From the 
fundamental, methodological viewpoint, it has the following (slight) draw- 
back: namely, when defining a random element w.r.t, a finitely additive 
measure ix, we explicitly used a sequence Ixn whose limit is ix. Intuitively, 
a measure ix can be defined as a limit in different ways: e.g., the "uniform" 
distribution on the real line can be defined either as a limit of  uniform 
distributions on the intervals I - n ,  n] or as a limit of  uniform distributions 
located on the intervals [ - ( n  + 1/2), (n + 1/2)]. It is desirable to require 
that the notion of  a random element should not depend on the specific 
choice of  the approximating sequence of measures. We will show that this 
requirement is indeed satisfied for the above definition. 

To show that, we will show that randomness in the sense of  this definition 
is equivalent to randomness in the sense of  some tr-additive (but not probabi- 
listic) measure la~ that is defined from ix. 

Historical comment. The idea of  using a tr-additive nonprobabilistic 
measure Ix0 to describe finitely additive probability measure ix is well known 
in probability theory: see, e.g., Chapter 2 of  the classic monograph by R6nyi 
(1970) or a more modem exposition in Hartigan (1983). We will show that 
our definition of randomness relative to ix can indeed be reformulated in 
terms of  this auxiliary or-additive measure Ix0- 
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4.4. Solution Reformulated: Simple Limit Measures 

Definition 4.5. Let Ix0 be a it-additive measure (not necessarily a probabil- 
ity measure) on a set X. An element x e X is called random w.r.t. ~ if x 
does not belong to any definable set of  Ixo-measure 0. 

Definition 4.6 (R6nyi, 1970; Hartigan, 1983). Let Ix be a simple limit 
measure. We can then define, for every set A C V/, p~(A) = h l i  �9 Ix,(A). 

Comment. One can easily check that this definition is consistent [i.e., 
for the sets A that belong to both V,. and Vy, the corresponding formulas lead 
to the same value IXo(A)], and that this definition defines an additive measure 
that can be expanded to a it-additive measure p,o on X. We will call this 
measure associated with Ix. For example, for a uniform distribution on the 
real line, ~ is simply a standard (Lebesgue) measure on R (maybe times a 
constant). Similarly, for the statistical physics case, we get the standard 
Lebesgue measure on R k. For these examples, the limit measure does not 
depend on the (physically meaningful) choice of  a limit sequence: e.g., 
[ - n ,  n] and [ - ( n  + 1/2), n + 1/2] lead to the same Lebesgue measure. 
Therefore, to show that our definition of randomness does not depend on the 
limit sequence Ix~, it is sufficient to show that this definition can be reformu- 
lated in terms of Ixo only. This reformulation is provided by the following 
proposition: 

Proposition 3. Let Ix be a simple limit measure, and let Ixo be an associated 
tr-additive measure. Then an element x is random w.r.t. Ix if and only if it 
is random w.r.t, p~. 

Comment. From the above text, the reader may get the wrong idea that 
finitely-additive probabilities are reasonably easy to handle, and that the 
results of  using them are practically always intuitively clear. Alas, this is not 
always the case: 

�9 It is worth mentioning that two different limit measures IX :/: v can 
lead to the same associated tr-additive measure. For example, let us take tx 
= lim Ixn and v = lim vn, where Ix~ is a uniform distribution on the interval 
I - n ,  n], while v~ is a uniform distribution on the interval [ - n ,  2n]. These 
two measures lead to the same associated measure: namely, to the Lebesgue 
measure p~. However, these two measures are different: e.g., the probability 
of  an element to be positive is equal to 1/2 according to Ix = lim Ix~, but to 
1/3 according to v = lim v~. 

�9 Finitely additive measures also lead to counterintuitive conditional 
probabilities (see, e.g., Schervish et al., 1984). 
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To handle such problems,  alternative (nonlimit)  approaches  to describing 
finitely-additive probabil i t ies have been proposed (see, e.g., Heath  and Sud- 
derth, 1978). 

4.5. Solution Reformulated: General Case 

Definition 4. 7. Let  p, be a limit measure.  We can then define, for every  
set A C_ Vi -- V,._ l, IXo(A) = Ix,~A). 

Comment. One can easily check that this definit ion defines an addit ive 
measure  that can be expanded to a tr-additive measure  P,0 on X. We will call 
this measure  associated with i~. 

Proposition 4. Let  I~ be a limit measure,  and let Po be an associated tr- 
additive measure.  Then  an e lement  x is r andom w.r.t, p, if  and only if it is 
random w.r.t. P,0. 

5. PROOFS 

5.1. Proof of Proposition 1 

Let  x ~ V,. be  r andom w.r.t, tti, and let i < j .  Let  us show that x is 
random w.r.t, p~j as well,  i.e., that x does not belong to any set A C_ Vj of  P~7 
measure  0. Indeed, since x is an e lement  o f  V/, the only possibili ty for  x to 
belong to A is to belong to A n v/. Since A n v~ c A and ~j~A) = 0, the 
set A n V/is also measurable  w.r.t, ttj and has measure  0" Ixj<A n vi) = O. 

Due to Definit ion 4.1, we have  Ix,<A n v~) = hij �9 Ixj<A n v,.) = hij �9 0 
= 0. So the intersection A n V/is a set of  Ixrmeasure  0, and since x is a ttr- 
r andom element,  x does not belong to A n v/. Thus,  x e~ A. 

So x does not belong to any defineable set A o f  pLfmeasure 0 and 
therefore x is p~j-random. Q E D  

Comment. Proposi t ion 2 can be proven in a similar  way. 

5.2. P r o o f  o f  P r o p o s i t i o n  3 

In order to prove  Proposit ion 3, let us prove  the fol lowing l emma (which 
is in some sense inverse to Proposit ion 1): 

/ .emma. Let  p~ he a limit measure,  i < j be integers, and let x ~ V, be 
random w.r.t, p~j. Then x will be also random w.r.t. IX,. 

Proof  o f  the Lemma. We need to prove that x does not belong to any  
definable set A of  i~/-measure 0. Indeed, if I~,-(A) = 0 for some A C V/, then 
due to Definit ion 4.1, we have lxj(A) = h~ ~ �9 p~i(A) = 0. Since x is r andom 
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w.r.t. Ix/and the definable set A is of  IxFmeasure 0, the element x cannot 
belong to A. The Lemma is proven. 

Let us now prove the proposition itself. The proposition states that two 
notions of  randomness are equivalent. To prove it, we will prove the implica- 
tion in both directions. 

�9 Let x be random w.r.t. Ix. This means that x is random w.r.t. Ixn for 
some n for which x E Vn. Let us show that x is random w.r.t. Ixo, i.e., that 
x does not belong to any definable set A of Ixo-measure 0. Indeed, let Ix(A) 
= 0. The only way for x E Vn to belong to A is to belong to A O Vn. From 
IXo(A) = 0 and A O V~ C A, we conclude that p~(A n V~) = 0. Since 
A n V~ c Vn, by definition of V~, we have 

Ix,(A N Vn) = k ' l  1 " ~ ( A n  Vn) = 0 

So, A n v~ is a set of  ix~-measure 0. Since x is Ix~-random, x cannot belong 
to A n v~, and thus cannot belong to A. Therefore, x is Ixo-random. 

�9 Let now x be random w.r.t. I-~. Let us show that x is also random 
w.r.t. Ix. Indeed, since X --- U V,., there exists an n such that x e V~. We will 
show that x is random w.r.t. Ixn and therefore random w.r.t. IX. To show that 
x is Ix~-random, we must show that x does not belong to any set A C V~ of 
Ix~-measure 0. Indeed, if IX~(A) = 0 and A C Vn, then from the definition of 
p~, we can conclude that IXo(A) = kln" IX~(A) = 0. Since x is Ix0-random and 
the set A is of  Ix0-measure 0, x cannot belong to A. Hence, x is Ixn-random 
and therefore Ix-random. QED 

Comment. Proposition 4 can be proven in a similar way. 
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